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ABSTRACT 

This paper discusses the application of artificial intelligence (AI) techniques in the field of marine 

engineering and naval architecture and explores the potential of AI models in predicting the main 

engine power of eco-friendly ferries over 5 parameters: length between perpendiculars, beam, draft, 

deadweight and speed. The research compares neural network and ANFIS against classical linear 

model providing exact equations of dependency between input and output parameters. The study 

utilizes an originally formed database consisting of more than 200 Ro-Pax ferries primarily focused 

on the ones operating in the Mediterranean Sea basin. For the formed database the Energy Efficiency 

Existing Index (EEXI) calculation is done and ferries complying with the IMO regulation are used for 

further power prediction. The data collection and analysis process involve preprocessing, outlier 

detection and statistical comparisons between the AI models and traditional method. 
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1. INTRODUCTION 

In today's rapidly changing world, Artificial Intelligence (AI) has emerged as a significant and 

essential technology. Its ability to quickly and effectively solve complex problems has made it a 

crucial tool in various professional fields, such as for example finding mathematical representation of 

calm-water resistance for contemporary planning hull forms (Radojčić et al.,2014; Radojčić et al., 

2019). Artificial intelligence (AI) tools are gaining popularity in marine engineering, although their 

use has been limited due to the black box nature and unclear processes. As global warming challenges 

the shipping industry to meet environmental requirements, integrating AI can be used as a tool to 

improve operational efficiency and help ships comply with new environmental regulations. Recent 

years have seen significant interest and progress in marine vessel performance. Factors like fuel, 

propulsion, loading, sea conditions, and currents influence ship performance, spurring research on 

optimization. (Bayraktar 2023). This study undertakes an extensive analysis of data from more than 

200 Ro-Pax ferries. By carefully examining data, the research investigates Artificial Neural Networks 

(ANN) and Fuzzy Inference Systems (FIS) models, utilizing five input parameters: length between 

perpendiculars (Lpp), beam (B), draft (T), deadweight (DWT) and speed (V). The study not only 

demonstrates the performance of these models but also provides evidence that employing various AI 

techniques enables the swift and accurate attainment of the desired outcome – the power of the main 

engine. The comprehensive analysis includes forming the original database, pre-processing, rejecting 

unnecessary data (diagnosing outliers) and providing the exact formula for each model. Finally, the 

aforementioned artificial intelligence models are compared with classical method: Multiple Linear 

Regression (MLR). 
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2. REGRESSION MODELS 

The primary benefit of employing an ANN model lies in its inherent capacity for self-learning and its 

ability to effectively capture and approximate complex nonlinear relationships between input variables 

and output outcomes (Jovanović, 2015). One of the primary factors influencing ship emissions is the 

power of the main engine (Lee, 2021). Consequently, numerous studies in existing literature have 

concentrated on determining the optimal main engine power for ships.  Lee et al. (Lee, 2021) proposed 

a deep feed-forward neural network (DFN) that involves data pattern recognition to predict ship 

power. Similarly, Parkes and others (Parkes, 2018) investigate the use of neural networks to improve 

the accuracy and flexibility of predicting ship power in different weather conditions. The main idea 

of many other studies, such as the one provided by Öztürk et al. (Öztürk 2022) is to reduce air pollution 

and operational costs in shipping through the implementation of efficiency measures using decision 

support systems based on MLR and ANN, which provide satisfactory fuel oil consumption prediction 

models, potentially resulting in energy savings. In recent research Ozsari (Ozsari 2023) implements 

multiple ANN models for the prediction of container, cargo, and tanker ships primary engine power 

and pollutant emissions. 

2.1 FEEDFORWARD BACKPROPAGATION NEURAL NETWORK 

In this study, a common ANN architecture, the feedforward neural network (FFNN), was used to 

predict eco-friendly ferry main engine power. FFNN consists of input, output, and hidden layers with 

interconnected neurons and adaptable weighted connections. Nonlinear activation functions in the 

hidden layer enable universal approximation capabilities. To train the artificial neural network, the 

widely used back-propagation algorithm is typically employed, with various weight and bias 

adjustment methods like Levenberg-Marquardt, Bayesian regularization, resilient and gradient 

descent, among others.  

2.2 FUZZY-NEURAL MODELS  

Fuzzy systems are computational models that use linguistic rules and a rule base to process crisp input 

data from a database, allowing for flexible handling of uncertainty and imprecision in decision-

making. In these systems, decisions are made by applying rules to input data, generating output values 

representing degrees of membership in fuzzy sets. By combining the benefits of training possessed by 

neural networks with decision-making similar to human methodology, synergy is achieved between 

ANN and FIS. 

2.2 (a) ANFIS 

ANFIS was first developed by Jang, (Jang 1993). The structure of ANFIS is made up of five layers, 

and it is usual that papers show a structure with two inputs xk, k = 1,2 and one output, Figure 1, based 

on the first-order Takagi–Sugeno model, with the two membership functions (MF) j = 1,2 and four 

rules m = 1,2…4. A typical set of rules can then be written as: 

If x1 is A11 and x2 is A12 then f1 = q11x1+q12x2+c1 

If x1 is A11 and x2 is A22 then f2 = q21x1+q22x2+c2, 

If x1 is A21 and x2 is A12 then f3 = q31x1+q32x2+c3 

If x1 is A21 and x2 is A22 then f4 = q41x1+q42x2+c4, 

where A1k, A2k, ..., Ajk are linguistic labels, qmk  and cm are the consequent parameters. The output of each 

rule is a linear combination of input variables.  

In the first layer of the ANFIS model, the membership degree 𝜇𝛢𝑖𝑘  of k-th input is calculated and then 

passed to the second layer.  
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Figure 1: ANFIS architecture with two inputs 

An example of a Gaussian membership function, which is characterized by two parameters, standard 

deviation β and mean α or premise parameters, Eq. (1). 

𝜇𝛢𝑖𝑘(𝑥𝑘) = 𝑒
−
(𝑥𝑘−𝛼𝑖𝑘)

2

2𝛽𝑖𝑘
2
.  (1)  

The second layer of the ANFIS model differs from the previous layer in that the nodes in this layer 

remain fixed. The output of each node in the second layer represents the firing strength wm of the 

corresponding rule. It is obtained using T-norm * between two membership degrees. 

𝑤1 = 𝜇𝛢11(𝑥1) ∗ 𝜇𝐴12(𝑥2), 

𝑤2 = 𝜇𝛢11(𝑥1) ∗ 𝜇𝐴22(𝑥2), 

                 𝑤3 = 𝜇𝛢21(𝑥1) ∗ 𝜇𝐴12(𝑥2),          (2) 

𝑤4 = 𝜇𝛢21(𝑥1) ∗ 𝜇𝐴22(𝑥2). 

The third layer of ANFIS model performs the computation of the normalized firing strength for each 

rule. This is achieved by dividing the firing strength of a rule by the sum of all firing strengths. 

�̅�𝑚 =
𝑤𝑚

∑ 𝑤𝑚𝑚
,   (3) 

where m = 1,2…4. In the fourth layer of the ANFIS model, the product of the normalized firing 

strength and the consequent parameters (qm and cm) of each rule is calculated. 

�̅�𝑚 𝑓𝑚 = �̅�𝑚∑ 𝑞𝑚𝑘 + 𝑐𝑚
2
𝑘=1 .    (4) 

The fifth and final layer of the ANFIS model aggregates the weighted consequent values obtained 

from all rules. 

y = ∑ �̅�𝑚  𝑓𝑚 =
1

∑ 𝑤𝑚
4
𝑚=1

4
𝑚=1  ∑ 𝑤𝑚

4
𝑚=1 (∑ 𝑞𝑚𝑘 + 𝑐𝑚

2
𝑘=1 ).  (5) 

3. TRADITIONAL REGRESSION MODELS 

Traditional models like multiple linear regression rely on explicit mathematical equations. Although 

newer models may offer flexibility, classical models often excel in interpretability, ease of use, clear 

assumptions, stability, and robustness. They assume a linear relationship between the target and 

multiple predictors. 
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4. CASE STUDY 

Due to its geographical characteristics, with a coastline stretching over 68,000 km and more than 

2,400 inhabited islands, Europe is a heavily trafficked ferry region. The highest concentration of ferry 

transport is situated in the Baltic, Northern, and Mediterranean Sea regions of Europe, with over 50% 

of the total number of routes operating in the Mediterranean Sea alone. Figure 2 (left) illustrates the 

percentage distribution of ferry routes in the mentioned regions over the years.  

The originally collected and compiled database primarily refers to ferries commuting in the 

Mediterranean Sea under the flags of Greece and Italy. During the formation of the base, the basic 

criteria were that all ships are classified as Passenger/Ro-Ro Ship (Ro-Pax), that they must be under 

classification society at the time, that the flag corresponds to the two mentioned countries above and 

that the gross tonnage (GT) is bigger than 400, so the EEXI rules are applicable.  

The formed database includes 215 ferry ships. The largest number of ships belongs to the Italian 

classification society RINA (Registro Italiano Navale) with a percentage of 84.7%, followed by the 

Russian RS (Russian Maritime Register of Shipping) with 4.8%, the French BV (Bureau Veritas) with 

3.8%, the English LR (Lloyd's Register) with 3.3%, the Polish PRS (Polish Register of Shipping) with 

2.4%, and finally, the American ABS (American Bureau of Shipping) and the Korean KRS (Korean 

Register of Shipping) with 0.5% each. 

 

   

Figure 2: Percentage share of ferry routes in the seas of Europe (https://www.shippax.com/ - left) 

and DWT distribution of the ferries in database (right). 

The average age of ferries in the database is 30 years, 29 for Greek ships and 31 for Italian ones. The 

most common configurations are with two engines (109 ships) and four engines (85 ships), while the 

smallest number of ships has six engines (2 ships). Figure 2 (right) shows the distribution of ships in 

the database according to deadweight tonnage, which ranges from 500 to 10000. This can be explained 

by the large number of different routes on which ferries operate. Different routes require different 

capacity needs, some requiring higher passenger capacity and lower vehicle capacity, and vice versa, 

hence the heterogeneous distribution of DWT. 

In Figure 3 (left), the number of ferries is shown as a function of the length between perpendiculars, 

with the ships grouped in intervals of ten meters. Figure 3 depicts the number of ferries depending on 

the beam (right) grouped in intervals of two meters. Figure 4 depict the number of ferries depending 

on draft (left) and speed (right). The ships are grouped in intervals of 0.5 meters for draft in range 

from 1.47 m to 8.35 m. The speeds of the ships in the database are ranging from 8.4 knots to 42 knots, 

when calculated to Froude number from 0.2 to 0.85, with an average speed of 21.4 knots, which is 

typical for this type of vessel as they are among the fastest cargo ships. 

 

21%

20%

20%

16%

17%

6%

DWT

DWT<500

500<DWT<1000

1000<DWT<2500

2500<DWT<5000

5000<DWT<7500

7500<DWT<10000

https://www.shippax.com/


International Conference on Postgraduate Research in Maritime Technology 2023 

2023: The Confederation of European Maritime Technology Societies & The Hellenic Institute of Marine Technology              5 
 

   

Figure 3: Number of ferries shown as a function of the length between perpendicular (left) and 

beam (right) 

   

Figure 4: Number of ferries shown as a function of the draft (left) and speed given in Froud number 

(right) 

4.1 DATA PRE-PROCESSING 

IMO is actively trying to reduce greenhouse gas emissions from shipping. One of the measures to 

achieve this was newly introduced EEXI requirement to improve energy efficiency of existing ships, 

which also include Ro-Pax ferries. The EEXI is a numerical value based on technical characteristics 

of the vessel like engine power, size and design characteristics. Though complying with EEXI is 

challenging, it encourages innovation and adoption of advanced technologies in maritime sector to 

comply with newly introduced IMO regulations leading to more environmentally friendly fleet of Ro-

Pax ferries. 

For each ferry ship in the database an attained EEXI and a required EEXI values are calculated, 

according to procedure given in MEPC.333(76). In order that the ship could be considered as energy 

efficient, attained EEXI should be lower than a required EEXI: Attained EEXI ≤ Required EEXI. 

Attained EEXI is calculated as per simplified formula Eq. (6). 

 Attained 𝐸𝐸𝑋𝐼 =
𝑃𝑀𝐸⋅𝐶𝐹𝑀𝐸⋅𝑆𝐹𝐶𝑀𝐸+𝑃𝐴𝐸⋅𝐶𝐹𝐴𝐸⋅𝑆𝐹𝐶𝐴𝐸

𝑓𝑖⋅𝑓𝑐⋅𝑓𝑙⋅ Capacity ⋅𝑓𝑤⋅𝑉𝑟𝑒𝑓⋅𝑓𝑚
   (6) 

The numerator in the EEXI formula generally represents CO2 mass flow produced based on the ship 

systems power needs, and the denominator represents benefit for the society (transport work). In 

general, the symbols in Eq. (6) have the following meaning: PME  and PAE are main and auxiliary 

engine power, CFME and CFAE are conversion factor between fuel consumption and CO2 emission for 

main and auxiliary engine, SFCME and SFCAE  are specific fuel oil consumption for main and auxiliary 

engine, VREF is reference speed and Capacity is equal to deadweight of the ship. The fi, fc, fl, fw, fm are 

correction factors which depend on type and design characteristic of the cargo ship. Two correction 
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factors are specially introduced for Ro-Pax ships. First one is fjRoRo which corrects EEXI values for 

ships with high Froude number i.e. higher speed and second one is fcRoPax cubic correction factor which 

partially replaces DWT as a measure of ship capacity with GT. The fallowing factors can be calculated 

as per Eq. (7) and Eq (8). 

 𝑓𝑗𝑅𝑜𝑅𝑜 =
1

𝐹𝑛
𝛼⋅(

𝐿𝑝𝑝

𝐵
)
𝛽

⋅(
𝐵

𝑇
)
𝛾
⋅(
𝐿𝑝𝑝

∇
1
3⁄
)

𝛿 ,     (7) 

where: α = 2.50, β = 0.75, γ = 0.75 and δ = 1.00 and ∇ is displacement (volume) coefficient. 

 𝑓𝑐𝑅𝑜𝑃𝑎𝑥 = (
𝐷𝑊𝑇

𝐺𝑇⁄

0.35
)
−0.8

 .     (8) 

Taking the values from MEPC.333(76) for CFME, SFCME, CFAE, SFCAE, correction factors and 

implementing two Ro-Pax correction factors in Eq. (6) the Attained EEXI is calculated as per Eq. (9). 

 Attained 𝐸𝐸𝑋𝐼 = 3.1144
𝑓𝑗𝑅𝑜𝑅𝑜⋅190⋅∑  𝑛𝑀𝐸

𝑖=1 𝑃𝑀𝐸(𝑖)+215⋅𝑃𝐴𝐸

𝑓cRoPax ⋅ Capacity ⋅𝑉ref 
   (9) 

The required EEXI is calculated as Eq. (10):  

Required 𝐸𝐸𝑋𝐼 = (1 −
𝑌

100
) · Reference line,   (10) 

where Y is reduction factor given for each type of cargo vessels depending on their size in DWT. 

Reference line is given with expression: Reference line = a·b-c, where coefficient a,b and c are given 

in the MEPC.328(76) for each type of cargo ships. 

After conducting the calculation on the filtered database, it was found that 87% of the ferry boats 

comply with the IMO regulations, while only 13% do not. The ships that comply with EEXI, along 

with the percentage breakdown by decades and the percentage breakdown by DWT, are provided in 

the Figure 5, below (Mijatović 2023). For further calculations in the study, only the ships that satisfy 

EEXI requirements have been adopted. Before developing further models, certain rules and limitations 

had to be established due to the significant heterogeneity of the database, which encompasses various 

types of ferries.  

    

Figure 5: The ships that comply with EEXI 

The first step in data filtering was to discard all ships with missing or NaN data for at least one of the 

following parameters: Lpp, B, V, T, DWT, or P, from further analysis.  Atypical elements are objects 

or entities that, in some sense, have characteristics that differ from the majority of other objects in a 

data set or have attribute values that are unusual compared to typical values for that attribute. 
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Figure 6: Identification of outlier 

To identify outliers within the given dataset, two multiple linear regression models were constructed.  

The first model examines the relationship between DWT and V as inputs, and P as the output. The 

second model considers the product of Lpp, B, and T (LBT), along with V, as inputs, and P as the 

output. The coefficient of determination R2 and adjusted R2 for the first are: 0.771 and 0.768, and for 

the second model: 0.826 and 0.824, respectively. In the context of linear regression and outlier 

detection, the significance level α plays a role in determining whether a data point is considered an 

outlier or not. The smaller significance level indicates that higher level of extreme deviation from the 

expected pattern is required for a data point to be considered an outlier. In this research, α is set to 

0.05. LBT-V-P dependence indicates 8 outliers (blue dots on Figure 6 right), but only 2 of them are 

different from 11 outliers found by DWT-V-P dependence, (Figure 6 left). All of them have been 

excluded from further analysis.  

4.2 SELECTION OF INPUT PARAMETERS AND NORMALIZATION 

In this research paper, we employed dimensionless metrics to represent various aspects of the system. 

Specifically, we used the length beam ratio Lpp/B to describe different configurations and introduced 

two dimensionless quantities, B/T and slenderness ratio Lpp/∇1/3, to characterize load ratios. 

When forming the base of ferry boats, the most difficult data to obtain was the volumetric 

displacement (volume) coefficient CB. In order to be able to calculate the displacement Δ of the other 

ships in the base, a reference value had to be adopted and it was decided that it should be the mean 

value of the all collected CB values. For ships that had volume coefficient values, the displacement 

was calculated based on them, and for the others it was given as Davg. Precisely for this reason, instead 

of volume, the displacement of the ship was used in the slenderness ratio. This was done because of 

the way the ship displacements were obtained for the ferries in the base. It was considered that by 

introducing the density of sea water, the error made during the estimation of the displacement will 

further increase and will affect the calculation. In order to overcome this problem, a water density of 

1t/m3 was adopted, where the values of volume and displacement were equalized. 

For shipping companies, the DWT/Δ ratio is an important economic and efficiency factor. It influences 

a ship's profitability by determining how much cargo can be carried per unit of displacement. Higher 

ratio typically indicates that a larger portion of the ship's displacement is dedicated to carrying cargo. 

This ratio is was adopted as the one of the input parameters. As the last parameter, the influence of 

the sailing speed via the Froude number based on the length was considered: Fn = V/ (g Lpp)1/2. The 

output of the mathematical model is a coefficient of delivered power CD = 1000 P/ρg∇V, which is used 

for the calculation of the power: xk= {Lpp/B, B/T, DWT/Δ, Lpp/∇1/3, Fn} and y =CD. 
Before further analysis and model creation, all input and output data must be recalculated to a certain 

interval. This procedure, known as normalization, is necessary due to scalar independence in linear 

regression and activation functions in neural networks, i.e. due to the hypersensitivity of those 
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functions to very small and very large input data values. Normalization is a well-known procedure in 

all statistical methods and machine learning. In this paper, it is implemented as Eqs. (11)-(12): 

 

𝑥𝑘,𝑛𝑜𝑟𝑚 = 𝑎 +
(𝑥𝑘−min(𝑥𝑘)) (𝑏−𝑎)

max(𝑥𝑘)−min(𝑥𝑘)
, 𝑦𝑛𝑜𝑟𝑚 = 𝑎 +

(𝑦−min(𝑦)) (𝑏−𝑎)

max(𝑦)−min(𝑦)
, 𝑘 = 1,2…5, 0 <  𝑎 < 𝑏,  (11) 

 

where: a = 0.05, b = 0.95. 

The previous expression can be written more briefly as: 

 

𝑥𝑘,𝑛𝑜𝑟𝑚 = 𝑝𝑘𝑥𝑘 + 𝑟𝑘 , 𝑦𝑛𝑜𝑟𝑚 = 𝐿𝑦 + 𝐺,   𝑘 = 1,2…5,      (12) 

where: 𝑝𝑘  = 
 (𝑏−𝑎)

max(𝑥𝑘)−min(𝑥𝑘)
, 𝑟𝑘 = 𝑎 +

(𝑎−𝑏) min(𝑥𝑘) 

max(𝑥𝑘)−min(𝑥𝑘)
, 𝐿 = 

 (𝑏−𝑎)

max(𝑦)−min(𝑦)
, 𝐺 = 𝑎 +

(𝑎−𝑏) min(𝑦) 

max(𝑦)−min(𝑦)
. 

 

5. FFNN MODEL DEVELOPMENT 

The study utilized FFNN models with different architectures, consisting of an input layer, output layer, 

and one or more hidden layer(s). The activation functions employed were all the sigmoid (sig) for the 

hidden layer(s) and for the output layer. This function is continuous, differentiable and has the and 

has a positive range (unlike hyperbolic tangent). The training algorithm employed was the Levenberg–

Marquardt (LM). For the FFNN models the number of neurons in the hidden layer was found by a 

trial-and-error procedure. The optimum structure of the best FFNN models was found to be three 

hidden layers with 5, 7 and 5 neurons, respectively. 

By random selection, the data is divided as follows: 70% of the data is taken for training, 15% for 

validation, and 15% for testing. Figure 7 shows the comparison of the measured and predicted values 

for the best FFNN model. The network quality indicator is the correlation number. The diagram in 

Figure 7 shows how the results are grouped, how much the network outputs deviate for the training 

(blue line), test (green) and all (red) input data. If the network has learned to fit the data well, the linear 

fit to this output-target relationship should closely intersect the bottom-left and top-right corners of 

the plot (dashed lines). Another performance criteria – MAE was also calculated and it can be seen in 

Table 1. The function constructed from the network is given as Eq. (13):  

 

𝑦 =  

σ

(

 
 
𝑑1+∑

(

  
 
𝐷1𝑙σ

(

 
 
𝑐𝑙+∑

(

 
 
𝐶𝑙𝑖σ(𝑏𝑖+∑ (𝐵𝑖𝑗 σ(𝑎𝑗+∑ 𝐴𝑗𝑘(𝑝𝑘𝑥𝑘+𝑟𝑘⏞      

𝑥𝑘,𝑛𝑜𝑟𝑚

)5
𝑘=1 ))5

𝑗=1 )

)

 
 7

𝑖=1

)

 
 

)

  
 

5
𝑙=1

)

 
 

⏞                                                                
𝑦𝑛𝑜𝑟𝑚

−𝐺

𝐿
,    (13) 

 

where xk is the kth input feature; 𝐴𝑗𝑘, 𝐵𝑖𝑗 , 𝐶𝑙𝑖  and 𝐷1𝑙 represents weights between corresponding layers, 

where first index indicates neuron and second indicates input; aj, bi, cl, are biases in hidden and d1 is 

bias in output layer. σ is nonlinear activation function. Although activation functions only have to be 

continuous in parts, in most cases it is suitable to use fully continuous and differentiable functions (on 

the whole domain). Sigmoidal function is chosen for activation in all layers. σ(𝑥) =  
1

1+𝑒−𝛼𝑥
  , with α 

set to 1.  Other parameters: pk, rk, L and G are explained in Normalization (4.2 Section).  
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Figure 7: Error and comparison of the measured and predicted values for the best FFNN model 

 

6. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM 

In the present attempt, the number of membership functions assigned to each input variable was 

chosen empirically by examining the desired input-output data and by trial and error. The initial 

model, shown on Figure 1, consists of 20 premise parameters, which include 5 inputs and 2 Gaussian 

membership functions Eq. (1). The algorithm employed to find these parameters is a backpropagation. 

To extract the initial fuzzy model, the first step involves applying grid partitioning (GP) to the input-

output data pairs. The GP method ensures that the membership functions (MFs) are uniformly spaced 

and have identical shapes. However, this can lead to an exponential increase in the number of rules, 

even with a moderate number of inputs. In the current scenario, with a fuzzy inference system 

featuring 5 inputs and only 2 Gaussian membership functions per input, the grid partitioning yields a 

total of 32 rules (2^5), because of the curse of dimensionality (when number of inputs or number of 

membership functions increases, then the number of fuzzy rules also increases exponentially).  In the 

ANFIS structure presented in this paper, there are a total of 192 consequent parameters, with each of 

rule having 6 parameters (5 for each input and one independent). Therefore, when considering both 

the premise and consequent parameters, the overall parameter counts amounts to 212. Of all T-norms, 

product is chosen to be used in the second Layer. Final output from the fuzzy neural network can be 

calculated using Eq. (14).  

𝑦 =  

1

∑ 𝑤𝑚
4
𝑚=1

∑ 𝑤𝑚(∑ 𝑞𝑚𝑘(𝑝𝑘𝑥𝑘+𝑟𝑘⏞      
𝑥𝑛𝑜𝑟𝑚

)+𝑐𝑚
5
𝑘=1 )4

𝑚=1

⏞                                  
𝑦𝑛𝑜𝑟𝑚

−𝐺

𝐿
,  (14) 

where qmk and cm are consequent parameters (from rules). Although in the terms of training ANFIS 

model offers promising results, Table 1, this trend does not continue for testing, Figure 8. This could 

be explained with model complexity, many input arguments and using the grid partitioning which 

cause the exponential growth of the fuzzy rules and that ANFIS presents a combination of linear 

polynomial functions in its output. Figure 9 a) – j) shows the dependency of the output on any two 

inputs. Inputs are taken in the same order as in xk: input1 = Lpp/B, input2 = B/T, input3 = DWT/Δ, 

input4 = Lpp/∇1/3, input5 = Fn and output CD. 
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Figure 8: Error and comparison of the measured and predicted values for the best ANFIS model 

     

Figure 9: a) Lpp/B, B/T, CD        b) Lpp/B, DWT/Δ, CD                  c) Lpp/B, Lpp/∇1/3, CD 

     

d) Lpp/B, Fn, CD                             e) B/T, DWT/Δ, CD                      f) B/T, Lpp/∇1/3, CD 

     

g) B/T, Fn, CD                                 h) DWT/Δ, Lpp/∇1/3, CD               i) DWT/Δ, Fn 3, CD 
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j) Lpp/∇1/3, Fn, CD                                

7. TRADITIONAL MODELS DEVELOPMENT 

In this section results from multiple linear regression will be provided. The model, represented by Eq. 

(15), corresponds to the Multiple Linear Regression approach.  

𝑦 =  

(𝛽0+∑ 𝛽𝑘(𝑝𝑘𝑥𝑘+𝑟𝑘⏞      

𝑥𝑘,𝑛𝑜𝑟𝑚

)5
𝑘=1 )

⏞                  
𝑦𝑛𝑜𝑟𝑚

−𝐺

𝐿
,  (15) 

 

where β0 = 0.1740 and β = [-0.7237 -0.2218 0.0461 0.5276 0.4259]. To visually assess the model's 

performance, Figure 10 illustrates a comparison between the target and predicted values using the 

MLR model. Notably, the correlation coefficient exceeds 0.94, indicating a strong linear relationship 

between the predicted and actual values. Because MAE fails to punish large error prediction the best 

MLR shown the worst results in this criterion, but when it comes to correlation factor measure, ANFIS 

exhibited the least favourable results 

 

 
 

Figure 10: Error and comparison of the measured and predicted values for the best MLR model 

 

Figure 11 presents comparison of all models and the real test data.  
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Figure 11: Comparison of the FFNN, ANFIS and MLR 

Table 1 summarizes the results obtained by applying the best preformed models for each method in 

the terms of MAE and R. Parameters of these models are given in Appendix.  

Table 1: The best values of MAE and R for modern and traditional regression techniques 

Method Mean absolute error - MAE Correlation coefficient - R 

Train dataset Test dataset Train dataset Test dataset 

FFNN 0.01613 0.03181 0.98448 0.96569 

ANFIS 0.02003 0.03638 0.97263 0.93581 

MLR 0.02438 0.03696 0.95967 0.94147 

In Table 2 the results are averaged over ten independent runs, and the best results are indicated in the 

bold type.  

Table 2: The average values of MAE and R for modern and traditional regression techniques 

Method MAE R 

Train dataset Test dataset Train dataset Test dataset 

FFNN 0.022513 0.031366 0.96599 0.933773 

ANFIS 0.024483 0.038636 0.950695 0.924699 

MLR 0.027048 0.037098 0.950528 0.923214 

8. CONCLUSIONS 

The research utilized a comprehensive database primarily focused on Mediterranean Sea basin ferries, 

with Greece and Italy as the main contributors. The EEXI calculation was done for the created 

database, and the ships that complied with the IMO requirement were used for further power 

prediction. The data underwent precise pre-processing, outlier detection, and statistical comparisons 

between the AI models and traditional technique. Through an investigation, it became evident that AI 

models have the potential to revolutionize this field. The research compared two different AI 

architectures, including FFNN, ANFIS and classical multiple linear MLR, throughout two criteria: 

coefficient of correlation and mean absolute error.  Ultimately, the mathematical models developed in 

this study are versatile and can be implemented in various programming languages or tools. 

Surprisingly, while FFNN, with its nonlinear nature, displayed the best results in both terms, the best 

MLR model also demonstrated significant promise especially on the testing data. The optimization of 

ANFIS parameters and avoiding grid partition which suffers from the curse of dimensionality would 

probably contribute to an enhancement in its performance. The results showed that all three different 

models have excellent agreement with target values. This research highlights the importance of 

considering both traditional and AI-based methods when approaching complex engineering problems. 
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9. APPENDIX 

Table 3: Table of neural network parameters (functions representing the output model) 

 

 

 

Table 4: ANFIS premise and consequent parameters  

 

j Aj1 Aj2 Aj3 Aj4 Aj5 a j i B i1 B i2 B i3 B i4 B i5 b i

1 -3.28876 0.33677 4.16012 -4.15641 4.87905 4.65587 1 -5.12563 2.65542 -4.89347 0.52257 3.89146 3.21073

2 4.35843 -5.18083 -2.40021 -0.84172 3.76688 -1.0065 2 3.38835 -1.61511 2.80939 4.96292 -3.85603 -7.36271

3 -3.00178 0.89156 -1.89225 -1.80173 6.1742 0.91508 3 3.48122 -4.34514 -5.44006 0.34604 3.78631 0.22806

4 0.43798 0.40144 -3.09167 -8.03634 2.63088 5.63245 4 2.27801 -1.20839 -6.9587 4.00962 -0.14242 1.51492

5 -2.86924 3.17832 2.2655 1.9607 -5.58485 -7.02272 5 3.49723 3.07672 -6.75903 0.26026 -3.04861 2.66635

6 -4.65928 5.55562 0.32137 -2.5814 1.913 -3.27717

7 2.7776 4.7746 -0.40907 -3.10186 -5.29917 3.70518

C11 C12 C13 Ci4 C15 C 16 C17 c 1 k p k r k

-3.66054 1.84198 2.80507 -0.21939 -1.18761 1.41906 -4.04158 6.33113 1 0.1651809 -0.3582328

3.38363 2.08991 -4.13246 2.5873 1.80467 -0.25421 1.83586 -6.0888 2 0.1438822 -0.373716

3.50726 3.50384 1.48631 1.39612 3.32051 -2.4313 -4.1857 -1.96468 3 1.0647935 -0.0699902

3.91898 -4.19942 -0.71853 2.79735 -1.35752 -3.27433 -1.37037 2.49116 4 0.2819786 -1.1001839

3.87391 -0.20698 -4.26104 4.2394 -0.0251 -0.82404 -0.04988 1.51104 5 1.3832278 -0.2357441

D11 D12 D13 Di4 D15 d 1 L 0.006746

-0.62147 0.11969 -4.43282 -1.53057 -2.66849 5.60293 G 0.0049544

i=1,2 Rule m q m1 q m2 q m3 q m4 q m5 cm

k =1,…,5 1.        0.07707 0.04148 0.04158 0.06699 0.05042 0.20511

A 11 0.15934 0.36032 2.         0.02156 0.01398 0.01046 0.02282 0.0207 0.05444

A 21 0.95925 0.30352 3.         0.02809 0.01803 0.00947 0.02722 0.03794 0.07479

A 12 0.02301 0.07787 4.         0.0484 0.03253 0.01499 0.06331 0.0594 0.09961

A 22 0.68993 0.26933 5.         0.01278 0.00813 0.01382 0.01384 0.00731 0.03024

A 13 0.10501 0.46661 6.         0.00385 0.00626 0.01006 0.00852 0.00973 0.01535

A 23 1.02048 0.26668 7.         0.01323 0.01009 0.02178 0.01652 0.00851 0.03048

A 14 0.06216 0.18371 8.         0.00644 0.01262 0.01973 0.01695 0.01986 0.02794

A 24 0.93025 0.36031 9.         0.03072 0.02597 0.02056 0.03178 0.02421 0.09019

A 15 0.0003 0.28488 10.      0.02306 0.04766 0.01647 0.04342 0.06457 0.0864

A 25 0.93952 0.38411 11.      0.01269 0.03132 0.03058 0.03634 0.03864 0.04867

12.      0.04816 0.1492 0.1157 0.1912 0.1964 0.25653

13.      0.00766 0.00863 0.0121 0.01126 0.00611 0.02098

14.      0.00734 0.02059 0.03032 0.02501 0.03309 0.04192

15.      0.03173 0.03157 0.05557 0.04699 0.02235 0.0758

16.      0.03969 0.11222 0.16862 0.14075 0.17978 0.22746

17.      0.02942 0.01236 0.0134 0.02827 0.01632 0.06102

18.      0.0109 0.00505 0.00324 0.0115 0.00905 0.02084

19.      0.0373 0.00998 0.00279 0.03605 0.03747 0.05343

20.      0.05017 0.01924 0.00934 0.05453 0.04051 0.07799

21.      0.00663 0.00322 0.00588 0.00693 0.00301 0.01327

22.      0.00142 0.00083 0.00132 0.00167 0.0011 0.00303

23.      0.00624 0.00386 0.00729 0.0072 0.00377 0.0125

24.      0.00272 0.00155 0.00215 0.00336 0.00229 0.00512

25.      0.00739 0.00565 0.00404 0.00846 0.00517 0.01738

26.      0.00586 0.00616 0.00165 0.00827 0.00862 0.01361

27.      0.00474 0.01281 0.00122 0.0121 0.02058 0.01136

28.      0.02826 0.00739 0.0081 0.03102 0.02427 0.04547

29.      0.00249 0.00205 0.00309 0.00313 0.00113 0.0055

30.      0.00071 0.00103 0.00127 0.00138 0.00139 0.00228

31.      0.01062 0.0093 0.01686 0.01436 0.0041 0.02242

32.      0.00302 0.00414 0.00554 0.00586 0.0052 0.00897

α ik β ik
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