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ENGIMMONIA — Sustainable technologies for future long-distance LN

shipping towards complete decarbonization ZENGR. |\ JONIA ,
Make Ammonia combustion fully zero emission Three main R&D Lines
Bringing on board of real vessels samples of decarbonization technologie: Three demo vessels
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Targets

1) promote ammonia as the cleanest and most promising fuel for shipping sector;

2) demonstrate clean energy solutions for on-board electricity and HVAC;

3) foster replicability at business, regulatory, policy and naval classification level
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Shipping contribution to GHG and pollutant emissions

Shipping accounts for: IMO initial strategy: Revised strategy:

« Almost 3% of global GHG * 50% reduction of GHG by

* 24% of NO, 2050
« 24% of SO, } in the EU * 40% reduction of carbon
intensity by 2030

23>

* 9% of PM &
« Complete decarbonization
by 2100



Ammonia gNHSZ as a fuel: Main emissions

Alternative, C & S free fuel, high energy density,

easy storage etc.

NH,; combustion main emissions:
» Unburned NH,

> NO, R strong GHG with 100-year
» N,O GWP equal to 300.



Problem & General aim of this work

PROBLEM
Design of emission control via trial and error is
prohibitive in view of the huge testing costs of
both NH; combustion & aftertreatment devices.

AlM
Development of accurate and predictive models
of the aftertreatment system to guide the
optimum design at an early phase.
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Why are early-stage predictive models important...

Ammonia combustion is likely to result in unburned NH,.

Two possible scenarios of NH,/NO, ratio in the exhaust gas of the NH; engine:

4 NH3 + Li-NO + 02 — 4 N2 + 6 HZO l“:: : ' - '.:.:.:":.'

» »
- »
Ty »

4 NH,* +2NO + 2 NO, — 4 N, + 6 H,0 T
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1. Lack of ammonia (NH;/NO,<1): ‘*‘ \ 2. Excess of ammonia (NH5/NO,>1):

.
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NH; injection upstream of SCR to reduce ‘_:
NO,. 3

ASC placed after the SCR to handle
unreacted NH; of the deNO, process.
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Two commercial catalyst
samples are tested:

1. Vanadium-based SCR (V-SCR)
2. Platinum-based AOC (Pt-AOC)

Experimental set-up

>
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Small-scale testing in Synthetic Gas Bench (SGB)
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Model set-up: Mathematical model

‘Exothermia suite” software

Dual layer ASC

SCR reactions

NH, + O, NO,, N,0, N,

Monolith wall




Model set-up: Reaction mechanisms

Type

Reaction

NH,; storage/release

Type

Reaction

Standard SCR

4 NHz* + 4NO + O, — 4 N, + 6 H,0

NO oxidation

NO + % 0, <> NO,

Fast SCR

4 NHz* +2NO +2NO, — 4 N, + 6 H,0

NO, SCR

NH,* + 3/4 NO, — 7/8 N, + 3/2 H,0

NH; oxidation

4NH; +50,—4NO +5H,0
2 NH; +3/20, — N, + 3H,0

N,O formation

2 NH,* + 2 NO + 0, — N, + N,O + 3 H,0
2NH3*+2N02_)N2+N20+3H20

NH; & NO oxidation to

N,O

2 NH, + 2 NO + 3/2 0, — 2 N,O + 3 H,0

NO oxidation

NO + % 0, <> NO,

NH; oxidation

4NHz* +50,— 4 NO +5 H,0
2 NH;* +3/2 0, — N, + 3H,0

*stored NH; on the catalyst sites
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Reaction model calibration: V-SCR

d

Feed gas: NH; + NO + O, Feed gas: NH; + NO + NO, + O,
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Reaction model calibration: Pt-AOC

300 symbols: experimental solid lines: model
v NH, 1
e NO °
250 + NO,
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The model achieves a good agreement with the

test results in the whole temperature range and is
able to predict the reaction selectivity N,O.
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Preliminary design of catalytic
aftertreatment system

Application of existing catalytic devices used in Diesel engines in NH,
fueled engines.

NO, shall comply with Tier Il limit of 3.4 g/kWh.

Focus on the formation of N,O in the EATS.

*Pre-turbo (HP) exhaust gas conditions based on Diesel low-speed engines: SCR volume is equal to 0.5 x engine displacement.

Engine load [%)] 100 75 50 25
Volumetric flow of gas
onhaust gas temperature 410 350 310 290 GHSV [h'l] — g
[°C] Volume of catalyst
Exhaust gas pressure [bar] (4.0 3.1 2.1 1.4
SCR space velocity [h] 40,000 32,000 25,000 10,000
ASC space velocity [h1] 140,000 115,000 85,000 40,000 Estimated deNOX target 90%
NO, [ppm] 1500-2000 1500-2000 1500-2000 |1500-2000
Power [%)] 100 75 50 25
Test cycle type E3 —— -
Weighting 0.2 0.5 0.15 0.15
factor 14
Jpu—
2a7 *Zhu, Li, etal., 2020; Zhu, Xia, et al.,2020



Results: NH./NO,<1 (NH. injection)

B Optimal NH; injection to achieve 90%
NO, conversion at NH;/NO,=0.9

e = Cnox MWNO .
N20 MWexh exh

¢

mCOZ—eq.= mNZO x 300

Important reduction

— compared to LNG operation
where *CO,-eq. emissions

exceed 400g/kWh.

*Pavlenko, N. et al., 2020
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Results: NH./NO.,>1 (ammonia excess)
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Conclusions

It is preferable to tune NH,; combustion so that NH,;/NO, is less than 1 to keep N,O
concentration formed in the EATS at low levels (ASC is highly selective to N,0O).

N,O from ammonia combustion is expected to increase the total N,O emissions.

High N,O emissions may counterbalance the benefit from CO, reduction.

Both sources need to be considered to successfully control N,O.
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Future steps ZENGH [ VONIA |
Sustainable technologies for future long distance

shipping towards complete decarbonisation

Present (M24) M30 M36 M42 M48

Experimental small-scale investigation of the deN,O
catalyst performance followed by calibration and
validation of the model.

Integration in the catalyst model of N,O chemistry
and the relevant catalytic processes in a dedicated
deN,O catalyst.

Application of the catalyst models in the exhaust
gas stream of ammonia engines.

Development and optimization of the complete exhaust
aftertreatment system of ammonia engine applications.
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