

ARISTOTLE UNIVERSITY THESSALONIKI SCHOOL OF ENGINEERING DEPT. OF MECHANICAL ENGINEERING

Ammonia as a Marine Fuel Towards Decarbonization: Emission Control Challenges

Georgia Voniati

Laboratory of Applied Thermodynamics, Department of Mechanical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Source: EU official page

ENGIMMONIA – Sustainable technologies for future long-distance shipping towards complete decarbonization

Targets

- 1) promote ammonia as the cleanest and most promising fuel for shipping sector;
- 2) demonstrate clean energy solutions for on-board electricity and HVAC;
- 3) foster replicability at business, regulatory, policy and naval classification level

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 955413. **Disclaimer:** The sole responsibility for any error or omissions lies with the editor. The content does not necessarily reflect the opinion of the European Commission. The European Commission is also not responsible for any use that may be made of the information contained herein. Introduction

Problem & Aim of this work

Methods

Reaction model calibration

Application of the model

Conclusions & Future Steps

Shipping contribution to GHG and pollutant emissions

Shipping accounts for:

- Almost 3% of global GHG
- 24% of NO_x
- 24% of SO_x in the EU
- 9% of PM

IMO initial strategy:

- 50% reduction of GHG by 2050
- 40% reduction of carbon intensity by 2030
- Complete decarbonization
 by 2100

Revised strategy:

• Net-zero GHG emissions by 2050 (MEPC 79&80)

Ammonia (NH₃) as a fuel: Main emissions

Problem & General aim of this work

MAN test engine 4T50ME-X

Design of emission control via trial and error is prohibitive in view of the huge testing costs of both NH₃ combustion & aftertreatment devices.

AIM

Development of accurate and predictive models of the aftertreatment system to guide the optimum design at an early phase.

Why are early-stage predictive models important...

Why are early-stage predictive models important...

Ammonia combustion is likely to result in unburned NH_3 .

Two possible scenarios of NH_3/NO_x ratio in the exhaust gas of the NH_3 engine:

Experimental set-up

Two commercial catalyst Compressed

samples are tested:

LAT

- 1. Vanadium-based SCR (V-SCR)
- 2. Platinum-based AOC (Pt-AOC)

Small-scale testing in Synthetic Gas Bench (SGB)

9

Model set-up: Mathematical model

"Exothermia suite" software

1D simulation approach (single channel):

- Uniform flow distribution.
- Negligible heat losses.
- Negligible internal diffusion.

Quasi- steady state balance equations for heat and mass transfer:

$$\rho_{\rm g} C_{\rm p,g} v_{\rm g} \frac{\partial T_{\rm g}}{\partial z} = -h \cdot \left(\frac{S_{\rm F}}{\varepsilon}\right) \cdot \left(T_{\rm g} - T_{\rm s}\right)$$

$$\frac{\partial (v_{g} y_{g,j})}{\partial z} = -k_{j} \cdot \left(\frac{S_{F}}{\varepsilon}\right) \cdot \left(y_{g,j} - y_{s,j}\right)$$

Transient energy balance in solid phase (wall temperature):

$$\rho_s C_{\mathrm{p},\mathrm{s}} \frac{\partial T_{\mathrm{s}}}{\partial t} = \lambda_{s,\mathrm{z}} \frac{\partial^2 T_{\mathrm{s}}}{\partial z^2} + S$$

1D+1D model:

- Internal diffusion effects become important.
- Mass transfer both in the gas & solid phase.

Surface concentrations inside the washcoat: layer:

$$-D_{\mathrm{w},j}\frac{\partial^2 y_{\mathrm{s},j}}{\partial w^2} = \sum_k n_{j,k} R_k$$

exothermia

Model set-up: Reaction mechanisms

SCR reaction scheme

Туре	Reaction
NH ₃ storage/release	$NH_3 \leftrightarrow NH_3^*$
Standard SCR	$4 \text{ NH}_3^* + 4 \text{ NO} + \text{O}_2 \rightarrow 4 \text{ N}_2 + 6 \text{ H}_2\text{O}$
Fast SCR	$4 \text{ NH}_3^* + 2 \text{ NO} + 2 \text{ NO}_2 \rightarrow 4 \text{ N}_2 + 6 \text{ H}_2\text{O}$
NO ₂ SCR	$NH_3^* + 3/4 NO_2 \rightarrow 7/8 N_2 + 3/2 H_2O$
N ₂ O formation	2 $NH_3^* + 2 NO + O_2 \rightarrow N_2 + N_2O + 3 H_2O$ 2 $NH_3^* + 2 NO_2 \rightarrow N_2 + N_2O + 3 H_2O$
NO oxidation	$NO + \frac{1}{2}O_2 \leftrightarrow NO_2$
NH ₃ oxidation	$4 \text{ NH}_{3}^{*} + 5 \text{ O}_{2} \rightarrow 4 \text{ NO} + 5 \text{ H}_{2}\text{O}$ $2 \text{ NH}_{3}^{*} + 3/2 \text{ O}_{2} \rightarrow \text{N}_{2} + 3\text{H}_{2}\text{O}$ $4 \text{ NH}_{3}^{*} + 4 \text{ O}_{2} \rightarrow 2 \text{ N}_{2}\text{O} + 6 \text{ H}_{2}\text{O}$
*stored NH ₂ on the catalyst sites	

AOC reaction scheme

Туре	Reaction
NO oxidation	$NO + \frac{1}{2}O_2 \leftrightarrow NO_2$
NH ₃ oxidation	4 NH ₃ + 5 O ₂ \rightarrow 4 NO + 5 H ₂ O 2 NH ₃ + 3/2 O ₂ \rightarrow N ₂ + 3H ₂ O
$NH_3 \& NO$ oxidation to N_2O	2 NH ₃ + 2 NO + 3/2 O ₂ \rightarrow 2 N ₂ O + 3 H ₂ O

$$R = k_{i} \cdot \Psi_{S} \cdot \Psi_{SNH3} \cdot C_{r1} \cdot .. C_{rn}$$
Tunable parameters

$$k_{i} = A_{i} \exp\left(-\frac{E_{i}}{R \cdot T_{S}}\right)$$

Reaction model calibration: V-SCR

The model achieves a good agreement with the test results in the whole temperature range and is able to predict the reaction selectivity N_2O .

NH3

Reaction model calibration: Pt-AOC

250 ppm NH₃, 50 ppm NO, 6% O₂, 15% H₂O, 15 ppm SO₂, N₂ balance GHSV=20,000 h⁻¹ The model achieves a good agreement with the test results in the whole temperature range and is able to predict the reaction selectivity N_2O .

Preliminary design of catalytic aftertreatment system

- Application of existing catalytic devices used in Diesel engines in NH₃ fueled engines.
- NO_x shall comply with Tier III limit of 3.4 g/kWh.
- Focus on the formation of N_2O in the EATS.

*Pre-turbo (HP) exhaust gas conditions based on Diesel low-speed engines:

Engine load [%]		100		75		50		25	
Exhaust gas temper [°C]	ature	410		350		310)	290	
Exhaust gas pressu	re [bar]	4.0		3.1	2.1			1.4	
SCR space velocity	[h-1]	40,000		32,00	00 25,		000	10,000	\mathcal{V}
ASC space velocity	[h ⁻¹]	140,000		115,0	5,000 85		000	40,000	
NO _x [ppm]		1500-2000		1500-2000		1500-2000		1500-2000	
Test cycle type E3	Power [%]	100		75		50	25]
	Weightii factor	ng 0.2		0.5		0.15		0.15	

SCR volume is equal to 0.5 x engine displacement.

$$GHSV [h^{-1}] = \frac{Volumetric flow of gas}{Volume of catalyst}$$

Estimated deNO_x target = 90%

Results: NH₃/NO_x<1 (NH₃ injection)

ightarrow Optimal NH₃ injection to achieve 90% NO_x conversion at NH₃/NO_x=0.9

$$\dot{m}_{N_2 O} = \frac{C_{NOx} \cdot MW_{N_2 O}}{MW_{exh}} \cdot \dot{m}_{exh}$$
$$\downarrow$$
$$\dot{m}_{CO_2 - eq.} = \dot{m}_{N_2 O} \times 300$$

Important reduction compared to LNG operation where *CO₂-eq. emissions exceed **400g/kWh.**

*Pavlenko, N. et al., 2020

15

Results: NH₃/NO_x>1 (ammonia excess)

Average concentrations based on weighing factors of E3 test cycle at the SCR and ASC outlet.

It is preferable to tune NH_3 combustion so that NH_3/NO_x is less than 1 to keep N_2O concentration formed in the EATS at low levels (ASC is highly selective to N_2O).

 N_2O from ammonia combustion is expected to increase the total N_2O emissions.

High N_2O emissions may counterbalance the benefit from CO_2 reduction.

Both sources need to be considered to successfully control N_2O .

Future steps

Sustainable technologies for future long distance shipping towards complete decarbonisation

Acknowledgments

Sustainable technologies for future long distance shipping towards complete decarbonisation

Funded by the European Union's Horizon 2020 research and innovation programme.

Thank you for your attention!