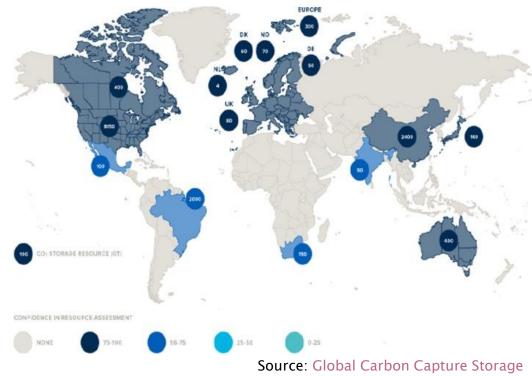

Carbon Capture & Storage Onboard – Current State, Prospect & Risks

Panos Mitrou Global Gas Segment Director

Mega Trends - Closing the Carbon Cycle

- CCSU at source combined with the new Hydrogen Supply Chains, LH2, Ammonia, LOHC
- CCSU post combustion use, combined with a new CO2 supply chain
- Approximately 50% of CH4 Calorific Value, ie Market Value, is linked to the Carbon Atom

Source: Global CCS Institute and IOGP dat


Current estimates show that there is adequate CO2 storage capacity in the world's saline aquifers and oil and gas reservoirs to store 2 centuries of

The Role of Carbon Capture and Storage in the Energy Transition Hon Chung Lau,* Seeram Ramakrishna, Kai Zhang, and Adiyodi Veettil Radhamani Cite This: Energy Fuels 2021, 35, 7364–7386

Captured Carbon Storage Facilities

Under Development

CCS Facility	Northern Lights	Neptune	DeepC	Northern Endurance Partnershi p (NEP)	Exxon Mobil
Country	Norway	The Netherlan ds	Australi a	UK	USA
Storage Locatio n	North Sea	Dutch North Sea	Evan Shoals aquifer (Sea North Australi a)	North Sea	Brunei Sea
Injectio n Capacit y [m.t/y]	5	5-8	1.5-7.5	_	_

Institute, 2018

Regulatory Proposals

• EU Emissions & Trading System (EU ETS)

The EU Council recognizes that new innovative technologies allow GHG emissions reduction and aims at ensuring that reviewing of their effectiveness should be happening.

• FuelEU Maritime

The EU Parliament proposes that the Commission should present a review of the GHG abatement technologies by 1 January 2027 since new GHG abatement technologies like C⁻⁻ technically and economically mature (

	10		Pre-session public release: 2	
		30 Sentember 2022	OF GHG EMISSIONS FROM SHIPS plure and storage on board ships Submitted by Norway	
MARINE ENVIRONM COMMITTEE 9th session genda item 7	ENT PROTECTION MEPC 78/7 10 Segtember 20 Original ERAUL Pre-session public release:	Provide the strate of the stra	SUMMARY next considers how carbon capture and storage can 40 emissions from shipping, and white needs to be by the Organizationto enable the use of carbon capture on ships and ensure responsible handling and storage of d carbon divorative. Finally, if corporess a process for how	
	REDUCTION OF GHG EMISSIONS FROM SHIPS ling carbon capture technologies in the IMO regulatory framewor to reduce GHG emissions from ships	SUMMARY entry proposes amendments to the EEDI calculation o incorporate the positive emission reduction effects by the r a Carbon Capture system for Ship Enhaust gas (CCSE).	to careful double. Privally, in proposes a process for now Zaboncan work on this issue.	
	Submitted by Liberia and ICS SUMMARY	1	38 7/17, Resolution LP.1(1), Resolution LP.3(4), Resolution nd LC 34/15 annex 8	
Executive summary: Strategic direction, if applicable	This document proposes to consider the $\rm CO_2$ reduction obtained from cation capture technologies and regulate them in the EED/EEXI and CII frameworks. 3		ement's goal of limiting global warming to well below 2 °C using efforts to limit the temperature increase to 1.5 °C, a UNIC emerations in needed which can only be realised by	
Output Action to be taken: Related documents lackground This docume	3.2 Paragraph 15 MEPC 7017, Revolutions MEPC304721, MEPC30873 MEPC3287091 and MEPC302789 rd is presented in the context of the melaneratedion of the Intel® Ar		The use of catcion capture and storage (CCD) is expectivity exp, such as immetand ideepse and typing, and CCDs is in Bon strategy in most intragrand the storage of the CCD Solid interactional storage of the storage of the storage of the interactional storage and has highlighted in its initial GPU to calcion fluid, and technological innovation will be integral is Chipartication.	
MEPC 76 ac pal-based technical hipping (resolution M ind Cli framework.	logied the amendments to MARPOL Amer. VI introducing mandati and operational measures to reduce carbon intensity of internable EPC-328/07(i) on the relevant el fortunal guidelines supporting the effect of the second enterprise and the second carbon carbon index where minimal the internable difference State as measure. State and the second enterprise State as	a) XI formulas, ME/C / 0 reversed the proposal and beely allon of carbon capture on board and invited information regarizations to submit further information and concrete and differences.	Enterna	

- MEPC 79/7/4 (September 2022) submitted by Liberia and ICS proposes to consider CO2 reduction in the EEDI/EEXI and CII frameworks.
- MEPC 79/7/6 (September 2022) submitted by China proposes amendments to EEDI calculation guidelines to reflect the contribution of Carbon Capture system for Ship Exhaust gas (CCSE)
- MEPC 79/7/7 (September 2022) submitted by China proposes amendments to EEDI survey and certification guidelines to reflect the positive emissions reduction effects by the installation of CCS
- MEPC 79/7/16 (October 2022) submitted by Norway considers
 - how CCS technologies can reduce GHG emissions,
 - the possible options for the accounting, verification and certification of **captured CO2**, and
 - the CCS incorporation in the IMO regulatory framework.
- MEPC 79/7/22 (October 2022) submitted by Republic of Korea proposes to include the CO2 reduction from CCS in EEDI, EEXI and CII regulations.
- MEPC 79/INF.27 (October 2022) submitted by Republic of Korea introduces a concept of CO2 capture system and recent developments.

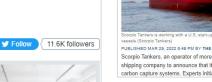
Carbon Capture & Storage Onboard - Key points

- CO2 CCS will be recognised by EU ETS, the relevant IMO regime is not yet in place but expected to be established in due time
- The key challenge for CCS onboard lies with S, Storage and onward Management of CO2. Other challenges are
 - Energy demand
 - Solvent or other process means availability, storage management
 - **Purity of exhaust gas treated** Sensitivity to some impurities may be very challenging e.g. Minimal concentration of SOx (even ULSFO) maybe a barrier.
 - Purity of CO2 produced CO2 global value chain may have strict standards on CO2 quality, greater purity requirement may apply
- Based on the volume/mass of CO2 produced onboard but also cost and energy demand, partial capture seems more feasible (starting from a 25% rate of absorption)
- Based on volumes of CO2, a global value chain of CO2 with many collection points is a key prerequisite
- Other storage options include transformation of CO2 to a solid byproduct or even disposal at sea (3rd option seems quite remote and immature)
- LNG as fuel presents a 25% efficiency in terms of volume/mass of CO2 produced

Type of Fuel	kg-CO ₂ /kg-Fuel (C _F)	Fuel Density (kg/m ³)	CO ₂ Density (kg/m ³)	m ³ -CO ₂ /m ³ -Fuel
Diesel/Gas Oil	3.206	~ 900	~ 1116.4	~ 2.58
Light Fuel Oil	3.151	~ 855	~ 1116.4	~ 2.41
Heavy Fuel Oil	3.114	~ 1010	~ 1116.4	~ 2.82
Liquified Petroleum Gas	3	~ 537	~ 1116.4	~ 1.44
Liquified Natural Gas	2.75	~ 422	~ 1116.4	~ 1.04
Methanol	1.375	~ 791	~ 1116.4	~

Fuel and CO2 mass and volume conversion Factors

100% Onboard Carbon Capture May Be Possible by 2026: Value Maritime


by Ship & Bunker News Team

Monday March 28, 2022

G Share Share Y Tweet Y Follow 11.

Technology firm **Value Maritime** is set to work on carbon capture system designs for a new fleet of tugs with a view to making them carbonneutral from delivery as soon as 2026.

The firm is working with CO2 company **Carbon Collectors** on a conceptual design study for a new fleet of MGO-fuelled tugs, it said in an

Scorpio Tankers Joins Efforts to Develop Shipboard Carbon Capture

vessis (compo Tanken) 2011.BHED MAR 5, 2022 449 PM BY THE MARITIME EXECUTIVE Scorpio Tankers, an operator of more than 120 product tankers, is the latest shipping company to announce that it is joining the efforts to develop shipboard carbon capture systems. Experts initially questioned the viability of the technology.

CCSU & Fuel Compatibility

CCSU can only work with a carbon atom in Fuel

Greater compatibility with cleaner fuels like LNG and LPG

- Almost 1/1 ratio of fuel to CO2 cubic capacity
- > Cleaner flue gas to treat
- Cleaner CO2 produced
- An up to 24% lower GHG footprint which allows a more delayed application
- Synergy with cryogenic applications

	15-days at 15MW			15-days at 40MW		
Type of Fuel	Fuel volume	CO ₂ Volume	Total Volume (Fuel + CO ₂)	Fuel volume	CO ₂ Volume	Total Volume (Fuel + CO ₂)
Diesel/Gas Oil	~ 504 m ³	~ 1304 m ³	~ 1808 m ³	~ 1345 m ³	~ 3477 m ³	~ 4823 m ³
Light Fuel Oil	~ 559 m ³	~ 1351 m ³	~ 1911 m ³	~ 1493 m ³	~ 3603 m ³	~ 5096 m ³
Heavy Fuel Oil	~ 503 m ³	~ 1417 m ³	~ 1920 m ³	~ 1341 m ³	~ 3780 m ³	~ 5122 m ³
Liquified Petroleum Gas	~ 795 m ³	~ 1148 m ³	~ 1943 m ³	~ 2121 m ³	~ 3061 m ³	~ 5182 m ³
Liquified Natural Gas	~ 947 m ³	~ 985 m ³	~ 1933 m ³	~ 2527 m ³	~ 2627 m ³	~ 5155 m ³
Methanol	~ 1232 m ³	~ 1195 m ³	~ 2427 m ³	~ 3286 m ³	~ 3187 m ³	~ 6473 m ³

Fuel and CO2 volumes calculated per voyage leg

EverLoNG ship-based carbon capture project wins EU funding

CARBON CAPTURE USAGE & STORAGE

April 7, 2022, by Naida Hakirevic Prevljak

A cross-boundary project involving science and industry experts has landed €3.4 million (\$3.7 million) from an EU climate action fund to accelerate the uptake of ship-based carbon capture (SBCC) by international shipping companies.

Carbon Capture Processes

Post-Combustion	Pre-Combustion	Oxyfuel Combustion			
Capture of CO2 from exhaust gas stream produced by fuel air combustion	Capture of CO2 following the processing of fuel before combustion	Combustion of fuel with pure oxygen			
 Applied technologies Chemical Absorption Membrane Technology Cryogenic Carbon Capture Calcium Looping Molten Carbonate Fuel Cell (MCFC) 	 Synthetic gas produced from fossil fuels used as fuel CO2 separated during syngas production 	 Oxygen separated from air in a separate process Fossil fuel combustion takes place with oxygen/mixture of oxygen and re-circulated flue gas Flue gas cooled and pure CO2 further processed 			
Benefits					
 Applicable to retrofits High operational flexibility Lower technology risk 	 High efficiency Ability to widescale adoption & commercialization Multiple fuels application Low technology risk 	 Very high capturing levels Small physical size of the unit Ability of retrofitting 			
Limitations					
 Low carbon capture efficiency High energy generation costs Large parasitic loads 	High CAPEXHeat transfer challenges	 Inflexibility due to complex configuration High combustion temperatures -> expensive materials Reduced purity 			

Post-Combustion Capture Technologies

Chemical Adsorption

CO2 in Exhaust absorbed by chemical solvent (e.g., Monoethanolamine)

[+] Highest technology maturity

[+] Lower energy demand in comparison with the cryogenic CO2 capture system

[-] Large mass flow of solvent,

[-] Higher energy consumption

[-] Expensive solvent and high OPEX

[-] Safety hazards for specific solvents like Ammonia

Calcium Looping

The process consists of two main cycles: an air contractor (CO2 capture cycle) and a sorbent regeneration cycle

- [+] CO2 storage onboard not required
- [+] Low CAPEX & OPEX
- [-] Solvent losses

Membrane Technology

Selective permeation of gases in exhaust through membrane

[+] Simpler system layout

[+] No need for solvent solutions, regeneration units etc.

[-] Membrane unit fouling

[-] Less effective when CO2 content ${<}10\%$

[-] Higher power requirements

[-] Pre-treatment of flue gas

Cryogenic Carbon Capture

CO2 in exhaust cryogenically cooled with other components separated

[+] Able to remove several component gases in exhaust

[+] Lower OPEX in comparison with chemical absorption-based technologies

[+] Applicable to LNG fuel processing systems

[-] Higher onboard power consumption

[-] Low technology maturity

Molten Carbonate Fuel Cells

MCFC can operate as a CO2 separator and concentrator while generating power

[+] Power production instead of consumption

[+] Low OPEX

[-] High CAPEX

[-] Technologically complex solution

[-] High separation efficiency (over 50%) but not comparable with the chemical absorption systems

Evaluating a system for shipboard installation

Key considerations

GHG reduction potential

CAPEX & OPEX

Reduction of CO₂e emissions Equipment, components and Installation

Onboard fuel related costs, maintenance, solvent top-up

Handling of captured carbon

Technology maturity

Conceptual

development

Pilot project

technology with

previous cases

Proven

Shipboard installation feasibility

Does installation requires major changes to established vessel design?

Space availability - CO₂ storage, CCS equipment Safety risk from operations, exposure to solvents, captured CO₂

Ο

Safety

Training and operational

Ease of

Operation

manpower requirement onboard

Carbon Capture Makers with Technologies

Maker	Technology	Applications	Comments
Ecospray	Molten Carbonate Fuel Cell (MCFC)		Projected for development
Ecospray	Amine absorption		Derisking stage with pilot applications expected soon
Ecospray	Calcium Looping		Derisking stage with pilot applications expected soon
Aqualung Carbon Capture AS	Membrane technology	Cement plants and Natural Gas processing plant in Arkansas	Global Ship Lease (GSL) and Golar LNG invested in a carbon capture initiative led by Aqualung
Chart Industries + Svante	Rapid absorption technology (Svante) Cryogenic Carbon Capture Technology (Chart)		Cooler by Design MoU signed between Chart and Svante
Value Maritime	A capture module captures CO2 from the vessel's exhaust and uses the CO2 to charge a CO2 battery	EPS – 2 x tankers (within 2022) JR Shipping Group – 2 x container feeder vessels	CO2 Battery refers to a containerized tank that can be swapped at port
Daphne	Hybrid system combining solvent and membrane technology	Unit under development no application yet	Differentiating advantage it can be coupled with other Daphne abatement systems to purify the process
Wartsila	Under development probably solvent or membrane	Solvang Ethylene Carrier	Scrubber CCS System
Panasia: Pan- Ccus	Wet absorption	target LNGC market	
VDL AEC Maritime B.V.	Solvent solution		Scrubber CCS System
Headway Technology Group			Autonomous calculation and adjustment of the CO2 collection ratio to meet IMO

Carbon Capture Projects & Platforms

Partners	Research Projects	Technology	Application / Demonstration
Conoship	EverLoNG	Demonstration and preparation project with many partners focusing at the framework and port reception infrastructure	Designed for LNG fueled ships, LR participates in the project
TNO, Conoship International BV, FME, Heerema Marine Contractors and Linde Gas Benelux	DerisCO2	Reactive absorption	LR HAZOP expected very soon pilot applications include 1. LNG Carrier 2. Heerema LNG fueled Crane Vessel (LR Classed)
Conoship with a consortium of German and Dutch companies	CO2ASTS	aqueous solution containing a chemically active amine (30wt% monoethanolamine)	Reference cases River boat, Dredger, Cruise ship
Mitsubishi Shipbuilding Co Ltd Kawasaki Kisen Kaisha Ltd (K Line) ClassNK	Carbon Capture for the Ocean (CC-Ocean)	Amine chemical absorption	"K" Line's bulk carrier "Corona Unity"
SINTEF Energy Research, SINTEF Ocean, NTNU, University of Oslo, Seoul National University, Wärtsilä Moss, Klaveness and Calix Limited	CCShip	Solvent and other novel CO2 solutions	Expected on Klaveness Combination Carriers
TECO and AVL	The relevant CCS technology will be integrated as part of the TECO 2030 Future Funnel	No info available yet	Decided to move from feasibility to system/process development
SINTEF, Wartsila, Aker Solutions, Cognite, Aize, AGR, OpenGoSim, Wintershall Dea, Vår Energi, Lundin, Equinor and TotalEnergies	LINCCS		The broader LINCCS project is focused on reducing costs for new carbon storage facilities by 70 percent

11

Currently ongoing projects – LR Involvement A brand new CCSU onboard set of LR Rules to come live 1st January 2023

Project	Technology	Status
Ecospray	Chemical Absorption	Early stage design development/de-risking
TNO, Conoship International BV, FME, Heerema Marine Contractors and Linde Gas Benelux - DerisCO2	Chemical Absorption	HAZID workshop scheduled Project vessel – Heerema LNG fueled Crane Vessel (LR Classed)
Daphne technology	Hybrid system combining solvent and membrane technology	Unit under development no application yet
Fleet of Container ships – Japanese Yard 13.7K TEU project	Chemical Absorption/Others	Early stage design development
Value Maritime – MR tanker CCS installation/Container Feeder	Chemical Absorption	AiP Completed, HAZID/HAZOP sessions undertaken, Installation scheduled
Panasia CCS	Chemical Absorption	HAZID/HAZOP scheduled
Sinotech CCS – 58K Bulk	Chemical Absorption	AiP Completed, HAZID/HAZOP sessions

Concluding Remarks

- CCSU constitutes an intriguing solution for reducing CO2 emissions
- It can deliver up to a Net Zero ambition
- Its infrastructure is going to constitute part of a wider Carbon value^{17 MAY 2022}
- It remains the key technology to prolong the use of fossil fuels
- Its financials remain competitive to hydrogen based fuels
- It blends better with fuels already delivering carbon savings
- Much will depend on the integration of CCSU in Regulatory Framew
- Class Rules are around the corner
- Pluralism of technologies, makers and solutions creates a positive momentum
- Gradual and modular application is possible leading to more mature business roll out

EPS AND VALUE MARITIME ANNOUNCE AGREEMENT

2x MR TANKERS TO BE FITTED WITH CARBON CAPTURE SOLUTION

Thank you

Panos Mitrou Global Gas Segment Director Panayiotis.Mitrou@lr.org

