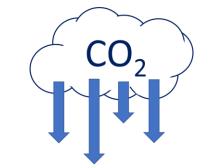


Application of Steam Reformer in Ship Propulsion

Antonis Trakakis Technical Director Marine Nikolas Daremas Technical Engineer

IAPYOHKE TO 1973

Thomas Chalkidis Managing Director George Nomikos R&D Manager


The need for green fuels

 CO_2 emissions = (how much fuel we burn) * (what type of fuel we burn)

$$(CO_2) = \frac{MT_{fuel}}{hour} * \frac{MT_{CO2}}{MT_{fuel}}$$

Availability and cost are key concerns

In the past : Min Fuel consumption for

a given transport work

<u>In the future :</u> Min Fuel **COST** for a **required CO2 reduction** & a given transport work

Improvement of combustion with H2

LNG fueled \longrightarrow Hydrogen ready

Property	H ₂	NG	HNG
Limits of flammability in air, (vol %)	4-75	5 -15	5-35
Burning velocity in NTP air (cm/s)	325	45	110
Quenching gap in NTP air (cm)	0.064	0.203	0.152
Diffusivity in air (cm²/s)	0.63	0.2	0.31

Hydrogen as fuel

BENEFITS	CHALLENGES
No SOx, PM, CO ₂ emissions	 Very small production globally No distribution & bunker infrastructure Very low energy density (1/2.5 of LNG), very big tank Great energy loss for liquefaction Liquid phase temperature interval is only 13°C; Insulation of LH2 tanks is critical Material challenges, at very low cryogenic temperatures Little storage time, not very suitable for long voyages

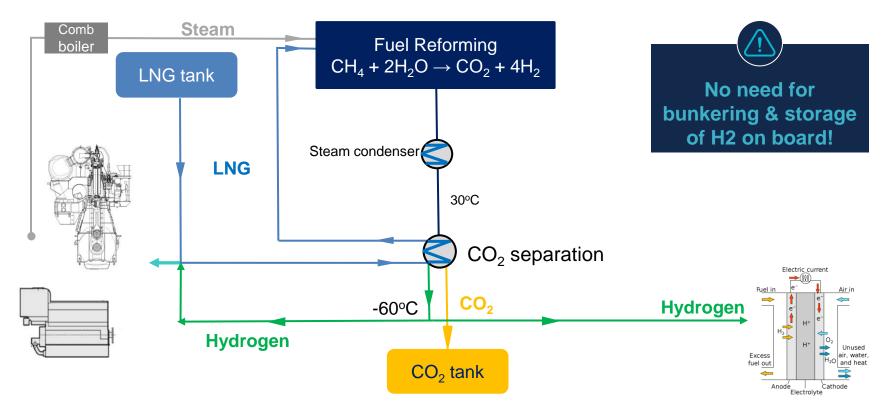
We cannot realistically anticipate that we can solve the problems around production, transportation, delivery and storage of hydrogen.

[EXAMPLE IMAGE]

Awareness is key for risk assessment

Methanol Methanol Fueled Ship	Labelling according Reg Pictogram	egulation (EC) No 1272/2008				
Same cost with LNG	Signal word	Danger				
CO2 reduction 8% compared to 24% of LNG	Hazard statement(s) H225 H301 + H311 + H331 H370	Highly flammable liquid and vapor. Toxic if swallowed, in contact with skin or if inhaled. Causes damage to organs (Eyes, Central nervous system).				
Ammonia	Labelling according Re Pictogram	egulation (EC) No 1272/2008				
	Circulation					
Toxicity of ammonia	Signal word	Danger				

The challenge with new fuels

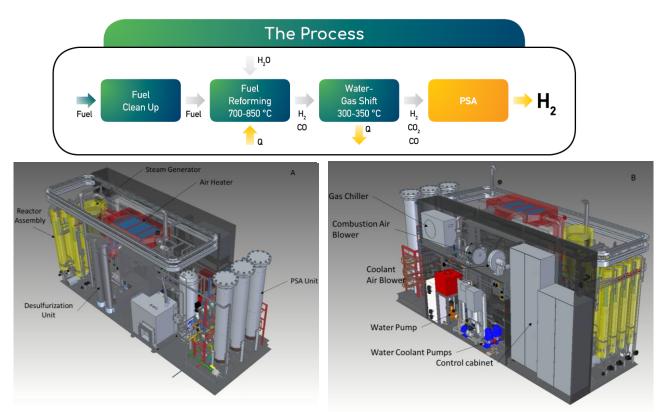


	Energy content	Annual consumption	Annual production	Traded volume
	(MJ/kg)	(mill Tonnes)	(mil Tonnes)	(mil Tonnes)
Fuel Oil	41	300		
Ammonia	18.6	661 (equiv)	250	25
Methanol	19.9	618 (equiv)	115	15

Needed increase	Production	Trade
Ammonia	x 2.5	x 26
Methanol	x 5.5	x 55

Steam Methane Reforming

Hydrogen is a safer fuel


Property	Unit	Safe fuel/less hazard, when parameter is :	Gasoline	Methane	Hydrogen		
Density	kg/m3	Low	4.4	4.4 0.65			
Diffusion coefficient in air	cm2/sec	High	0.05	0.16	0.61		
Specific heat at const. P	J/gK	High	1.2	2.22	14.89		
Ignition limits in air	vol %	Narrow range	1.0-7.0	5.0-17.0	4.0-75.0		
Ignition energy in air	mJ	High	0.24	0.29	0.02		
Ignition temperature	deg.C	High	228-471	540	585		
Flame temperature in air	deg.C	Low	2,197	1,875	2,045		
Explosion energy	gTNT/kJ	Low	0.25	0.19	0.17		
Flame emissivity	%	Low	34-43	25-33	17-25		

- The risk of hydrogen explosion is minimal.
- Although hydrogen can burn in low concentrations, an explosion of hydrogen is very difficult to occur,
- It blazes with little heat radiation, therefore only things immediately next to the flame would burn.

Onboard Hydrogen Generators

COP27 : Solutions for carbon intensive industries **RIR**

- Cement, iron and steel, and chemicals / petrochemicals industries are the most significant industrial CO2 emitters, accounting for about 25% of total CO2 emissions globally and 66% of the industrial sector.
- The decarbonization of these industries is a top priority
- The solutions presented fall into two categories:
- <u>Technology-based solutions</u>: carbon capture utilization and storage (CCUS); hydrogen; industrial energy efficiency; nuclear power and heat; electrification coupled with increased renewables
- Concept-based solutions : Circular Carbon Economy (CCE) and Industrial Clusters approach.

It is reasonable that shipping shares solution with other industries (CCUS)

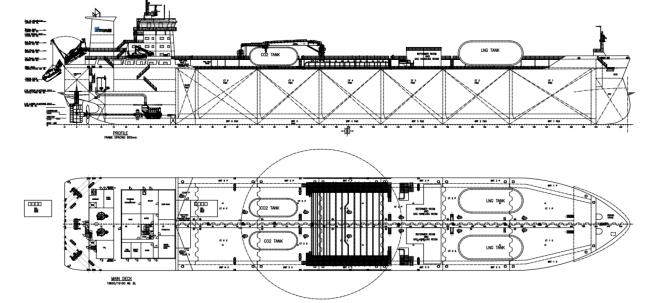
Scalable fuel cell system based on marine certified modules

Scalable from 200 kW to MW-scale

- PEMFC systems built in cabinets and certified by fuel cell suppliers
- Cabinets can be organized in lineups or backto-back installation
- Pre-engineered skid mounting enables standardized interfaces
- Container arrangement allows for on-deck installations
- Solutions suitable for newbuild or retrofit projects

IMAGES: Ballard, PowerCell Sweden

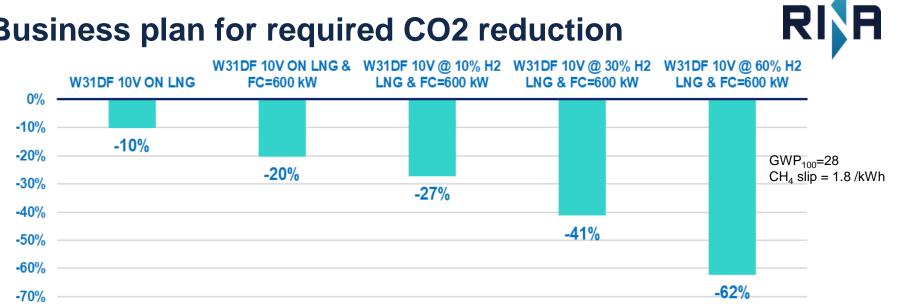
Actual vessel



PERFORMANCE

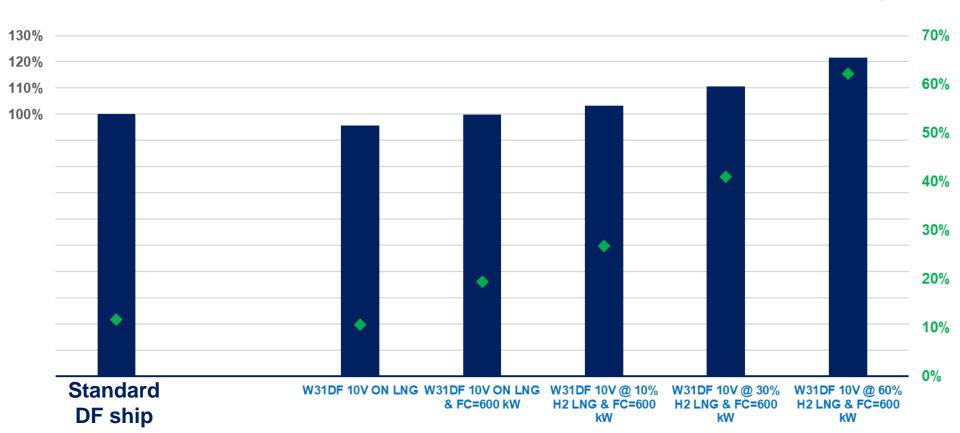
MAIN PARTICULARS

Length over all	183.00 m
Length between pp	177.00 m
Breadth mld	32.20 m
Depth mld	19.10 m
Draught design	11.00 m
Draught scantling	13.30 m
Deadweight at design draught	36 800 tonnes
Deadweight at scantling draught	48 500 tonnes
Cargo capacity	54 300 m ³
LNG tanks	1 450 m ³
CO2 tanks	1 400 m ³
Technical FW tanks	350 m ³
Domestic FW tanks	275 m ³
Water ballast abt	21 000m ³
Cargo pumps	12 x 600 m³/h
Ballast pumps	2 x 750 m³/h
Accommoodation	23 + 6 pers
High voltage shore power	6,6 kV
Service speed	13.0 knots

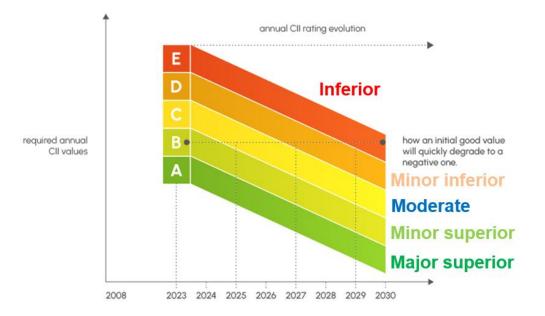


Propulsion options

	Conventional	Engines Only	Hybrid 4 stroke	Hybrid 2 stroke		
No. Engines	1	2	1	1		
Туре	2 stroke	4 stroke	4 stroke	2 stroke		
iype	6G50ME-C10.5-HPSCR	Wartsila 31DF, 2 x 8V	Wartsila 31DF, 10V	5G50ME-C9.6-GI Gas Std.		
MCR	10.220 kW	8V = 4,800 kW	6,000 kW	8,600 kW		
IVICK	10,320 kW	8V = 4,800 kW	6,000 kW	0,000 KVV		
SMCR	7,240 kW	Same as MCR	Same as MCR	6,840 kW		
Generators	3 x 650 kW	600 kW	N/A	1 x 1,200 kW		
ΡΤΟ/ΡΤΙ	N/A	2 x 1,500 kW	2,000 kW	1 x 3,000 kW		
Fuel Cells	N/A	N/A	800 kW	3,000 kW		
Less kW purchased		17%	45%	20%		
Propeller	FPP	CPP	CPP	FPP		


Business plan for required CO2 reduction

	Year	H2 prod. (kg/h)	LNG tank (m3)	CO2 tank (m3)
Ship Delivery	2025	36	1,298	90
1 st Drydock	2030	60	1,336	414
2 nd Drydock	2035	107	1,420	628
3 rd Drydock	2040	178	1,547	951


The cost for CO2 reduction

CII : required rate of CO₂ reduction

Attained annual $CII = f\left(\frac{Annual \ consumed \ fuel \ \times CO_2 \ conversion \ factor}{Capacity \ \times \ annual \ distance \ travelled}\right)$

The importance of CII

		2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045
Z=70%	2 Stroke Fuel Oil	В	В	С	С	С	С	С	D	D	D	D	Е	E	Е	Е	E	E	Е	Е	Е	Е
Z=100%	2 Stroke Fuel Oil	В	В	С	С	С	D	D	D	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е
Z=70%	2 Stroke LNG	Α	Α	Α	Α	Α	В	В	В	С	С	С	С	С	D	D	Е	Е	Е	Е	Е	Е
Z=100%	2 Stroke LNG	Α	Α	Α	Α	В	В	С	С	С	D	D	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е
Z=70% Z=100%	4 stroke LNG + FC + H2	Α	Α	Α	Α	Α	Α	Α	A	Α	A	Α	A	Α	Α	Α	A	Α	A	Α	Α	Α
						Ctur	dy for	a kar	ncorm	NOV (0	2 000	ראום ו	r) hull	< oorri	or							

Study for a kamsarmax (82,000 DWT) bulk carrier

Conclusions:

- Waiting for a new fuel to arrive, presents a great risk that may render new ships as stranded assets
- LNG offers a solution for few years more, but being fossil, has also a clear limitation in its use
- Shipping is provided with enough time to prepare, but solutions must be deployed by early 2030's
- New ships can provide carbon credits to existing ones

Carbon capture options

Pre-combustion	Post-combustion	Oxy-fuel					
 Steam Methane Reformer High efficiency of Carbon Capture No emissions of CH₄ Very little NO_x and N₂O emissions <u>RINA proposal</u>	 Efficiency depends on concentration of CO₂ Higher cost 	 Air separation required High efficiency of carbon capture No NO_x and N₂O emissions 					
Comb boller LNG tank LNG tank LNG tank LNG tank Steam condenser Hydrogen CO ₂ Separation Hydrogen CO ₂ tank	Absorbent and water Energy Exhaust gas with CO2 Fossil fuel +Air	Air Separation Unit N2 N2					

Aspects of post combustion capture

The process in the absorption tower is sensitive to vibrations

- Is not a unique technology : It may include a wide range of chemicals and processes with very different costs involved & requirements of logistics
- Cannot be applied in modular manner : Higher % CO2 capture requires a totally New system. This either limits the penetration of investment in time, or accounts for huge extra capex at ship's price
- Still undergoes technology development
- The mass of chemicals needed is enormous : even in case the product CaCO₃ can be discharges at sea :
- Storage demand : ammonia (x1.2), calcium hydroxide (x5.2) (which becomes even bigger due to water solutions), calcium carbonate (x10)
- It is important to design the capture system to have a high capture rate for the most frequent engine load.

Burning LNG leads to cleaner exhaust gas and lower USD/MT CO2

Conclusions

Fuel Selection

- No need to wait for zero-carbon fuels
- No need to handle toxic substances
- No need to develop new infrastructures

CO2 Storage

- Rapid development has already started
- All evidence points it will be commercially applied in large scale

Technology

- Mature for steam-methane reformers
- Mature for Dual Fuel engines
- Rapidly developing for Fuel Cells
- Eliminates Methane slip

IMO

2050

Extra Cost

- Much less than the cost of any other zero-carbon fuel
- Potential to be totally offset in case of moderate carbon tax
- Improved freight cost per unit of cargo

Thank you for your attention!

IAPYOHKE TO 1972